
ARTICLE

Low-coverage sequencing cost-effectively
detects known and novel variation
in underrepresented populations

Alicia R. Martin,1,2,3,* Elizabeth G. Atkinson,1,2,3 Sinéad B. Chapman,2 Anne Stevenson,2,4
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Summary
Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic

studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry popula-

tions. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 in-

dividuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with

participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-

effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants

from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of

R43 captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable

cost. Lower depths of sequencing (0.5–13) performed comparably to commonly used low-density GWAS arrays. Low-coverage

sequencing is also sensitive to novel variation; 43 sequencing detects 45% of singletons and 95% of common variants identified in

high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment

of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportu-

nities to enhance variant discovery at a cost similar to traditional approaches.
Introduction

Over the last decade, genome-wide association studies

(GWASs) have grown rapidly, deepening biological in-

sights into a breadth of human diseases. Data for these

studies are usually generated with GWAS arrays because

of their cost effectiveness and the availability of commonly
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used analytical pipelines. These arrays typically genotype a

fixed set of hundreds of thousands to millions of common

variants genome wide, and additional linked variants are

then imputed with haplotype reference panels.1 The utility

of this approach varies across populations, however,

because most GWAS arrays consist of variants that are

most common in European ancestry populations.2 Further
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compounding unequal genomic coverage issues, reference

data for imputation are also vastly Eurocentric.3–5

Recognition of these biases in genomic infrastructure

has driven concerted efforts to develop specialized, scal-

able arrays designed to capture variation common to

different continental ancestries.6 For example, the Popula-

tion Architecture using Genomics and Epidemiology

(PAGE) Consortium designed the Illumina Multi-Ethnic

Genotyping Array (MEGA), a dense array of �1.7 million

variants, which aimed to improve performance for imputa-

tion across globally diverse populations.3 A significant

portion of the �660,000 variants on the Global Screening

Array (GSA)–designed to decrease costs, increase scalabil-

ity, and improve imputation accuracy in European

populations–consists of a subset of variants from MEGA.

Additionally, the Human Heredity and Health in Africa

(H3Africa) Consortium developed a dense array of �2.5

million variants specialized for the higher genetic diversity

and smaller haplotype blocks in African genomes.7

Although these arrays all have potential benefits, an

inherent weakness to their ascertained nature is that they

cannot capture novel variants.

As sequencing costs have dropped, low-pass sequencing

has been proposed as a similarly priced and unbiased alter-

native to GWAS arrays in, for example, population genetics

and polygenic score analysis.8–12 Sequencing offers several

advantages: (1) variants are unascertained, meaning that

the quality of data generated is inherently unbiased toward

any particular population; (2) novel, population-specific

variants can be detected and used to further advance the

generation of haplotype reference panels; (3) DNA strand

is unambiguous given the alignment of sequencing reads

to a reference genome; and (4) non-human microbiome

DNA can be captured and variation analyzed with certain

DNA sampling procedures. These advantages are expected

to be especially beneficial in non-European populations

because corresponding reference data that support arrays

are often lacking.

Here, we have generated high-coverage whole-genome

sequencing data from populations vastly underrepre-

sented in genetics research to compare data quality that

would be produced by sequencing at various depths

versus genotyping with several commonly used arrays.

We have also compared the costs and analytical ap-

proaches that are feasible from each data generation

approach. To compare data generation strategies, we

included whole genomes that were sequenced as part of

the Neuropsychiatric Genetics of African Populations Psy-

chosis (NeuroGAP-Psychosis) study spanning five sites

across four countries in eastern and southern Africa.13

These populations are of particular interest because hu-

mans originated in Africa, resulting in high levels of ge-

netic variation and rapid linkage disequilibrium decay,

highlighting the disproportionate informativeness of

African genomes for human evolutionary studies and in

pinpointing causal variants. Thus, accurately capturing

genetic variation in these populations in an unbiased
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manner is particularly important for associating,

resolving, and interpreting genetic associations while

ensuring equitable translation of genetic technologies.

Our results highlight that low-coverage sequencing can

be a more appropriate data generation strategy than

GWAS arrays for assaying genetic variation across globally

diverse populations.
Subjects and methods

Human subjects
Ethical and safety considerations are being taken across multiple

levels, as described in greater detail previously.13 Because the sub-

jects the study aims to recruit are deemed vulnerable populations,

additional measures are taken to protect them. Potential partici-

pants are excluded if they are presenting with severe, intrusive

levels of psychiatric symptoms at the time of consent. Addition-

ally, researcher assistants use the University of California, San

Diego Brief Assessment of Capacity to Consent (UBACC) sys-

tem14,15 during the consent process to make sure participants un-

derstand the study, what is required of them, and that they can

withdraw at any point. Participants who pass the UBACC and

who want to continue are required to provide written informed

consent or a fingerprint in lieu of a signature. No protected health

information (PHI) or Health Insurance Portability and Account-

ability Act (HIPPA) identifiers are collected as part of the pheno-

typic or genetic dataset.

Ethical clearances to conduct this study have been obtained

from all participating sites, including

d Ethiopia: Addis Ababa University College of Health Sciences

(#014/17/Psy) and the Ministry of Science and Technology

National Research Ethics Review Committee (#3.10/14/

2018);

d Kenya: Moi University College of Health Sciences/Moi

Teaching and Referral Hospital Institutional Research and

Ethics Committee (IREC) (#IREC/2016/145, approval num-

ber: IREC 1727), Kenya National Council of Science and

Technology (#NACOSTI/P/17/56302/19576) KEMRI Centre

Scientific Committee (CSC# KEMRI/CGMRC/CSC/070/

2016), KEMRI Scientific and Ethics Review Unit (SERU#

KEMRI/SERU/CGMR-C/070/3575);

d South Africa: The University of Cape Town Human Research

Ethics Committee (#466/2016);

d Uganda: The Makerere University School of Medicine

Research and Ethics Committee (SOMREC #REC REF 2016-

057) and the Uganda National Council for Science and Tech-

nology (UNCST #HS14ES);

d USA: The Harvard T.H. Chan School of Public Health

(#IRB17-0822).
Human whole-genome sequencing PCR-free (v.1.1–

v.1.3)
Preparation of libraries for cluster amplification and sequencing

An aliquot of genomic DNA (350 ng in 50 mL) was used as the

input into DNA fragmentation (also known as shearing). Shearing

was performed acoustically with a Covaris focused-ultrasonicator,

targeting 385 bp fragments. Following fragmentation, additional

size selection was performed with a solid phase reversible
rican Journal of Human Genetics 108, 656–668, April 1, 2021 657



immobilization (SPRI) cleanup. Library preparation was per-

formed with a commercially available kit provided by KAPA Bio-

systems (KAPA Hyper Prep without amplificationmodule, product

KK8505) andwith palindromic forked adapters with unique 8-base

index sequences embedded within the adaptor (purchased from

Roche). Following sample preparation, libraries were quantified

via qPCR (kit purchased from KAPA Biosystems) with probes spe-

cific to the ends of the adapters. This assay was automated via Agi-

lent’s Bravo liquid handling platform. On the basis of qPCR quan-

tification, libraries were normalized to 2.2 nM and pooled into 24-

plexes.

Cluster amplification and sequencing (NovaSeq 6000)

Sample pools were combined with NovaSeq Cluster Amp Reagents

DPX1, DPX2, and DPX3 and loaded into single lanes of a NovaSeq

6000 S4 flow cell via the Hamilton Starlet Liquid Handling system.

Cluster amplification and sequencingoccurred onNovaSeq 6000 in-

struments utilizing sequencing-by-synthesis kits to produce 151 bp

paired-end reads. We processed output from Illumina software to

yield CRAM or BAM files containing demultiplexed, aggregated

aligned reads. All sample information tracking was performed by

automated lab informationmanagement system (LIMS) messaging.

Variant calling

We used the GATK best practices pipeline described for variant

calling by using code (available via web resources). Cromwell

was used to submit most jobs in parallel across the genome where

possible using the Google Cloud Platform (web resources).

Depth of coverage

Depth statistics from high-coverage whole genomes were

computed by the Broad Institute’s Data Science Platform team.

This calculation excluded low-quality, unmapped, unpaired, and

duplicate reads in depth of coverage calculations.

Downsampling sequencing reads

We downsampled reads by using the GATK DownsampleSammod-

ule, which retains a deterministically random subset of reads and

their mate pairs. We calculated the probability used for downsam-

pling on the basis of depth of coverage as described above (i.e.,

not simply on the basis of the total number of reads sequenced rela-

tive to the number of bases in the human genome because, for

example, some reads from saliva-derived DNAmay not be human).

Concordance

We computed non-reference concordance among homozygous

reference, heterozygous, and homozygous non-reference calls,

excluding no call and missing sites from counts, according to

Table 1:
Concordance ¼
P

s þ P
y

P
n þ P

o þ P
r þ P

s þP
t þ P

w þ P
x þ P

y
:

We excluded homozygous reference concordant calls (m) to avoid

high concordance among rarer variants by simply imputing the

most common allele.

Haplotype reference

We downloaded phased 1000 Genomes haplotype reference data

containing SNPs aligned to GRCh38 (web resources). We used

these phased haplotypes for genotype refinement, phasing, and

imputation.
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Genotype refinement, phasing, and imputation

We used Beagle 4.1 for genotype refinement of variant calls in

downsampled sequencing data with the 1000 Genomes Project

phase 3 as reference haplotypes prior to phasing and imputation

by using the genotype likelihoods (gl), ref, and map arguments

with impute ¼ false. As described in the Beagle 4.1 manual,

this combination of arguments estimates the posterior genotype

probability by using a reference panel with non-missing geno-

types and phased data, producing as output an unphased VCF.

We then used Beagle 5.1 for phasing and imputation also by us-

ing the 1000 Genomes Project phase 3 data both for low-

coverage sequencing data and GWAS array data, this time with

the genotype (gt), ref, map, and impute ¼ true arguments

(Figure 1D).

Gencove imputation

We generated FASTQ files from analysis-ready BAM files by using

bedtools bamtofastq. We then uploaded these FASTQ files to the

Gencove server, ran imputation and related analyses, and then

downloaded imputation results.
Results

To compare genetic data quality from variable depths of

sequencing versus commonly used GWAS arrays, we

sequenced the whole genomes of participants from the

NeuroGAP-Psychosis study to high coverage (target

coverage of R303 per individual, mean coverage ¼ 383,

all R203, Figure S1). This study consists of data from

five geographical sites (n ¼ 91, with n R 17 individuals

per site) across eastern and southern Africa (Table 2, Figures

1A and 1B). Participants in these studies were chosen from

a larger set of genotyped individuals on the basis of

ancestry patterns representative of the enrollment site.

They come from a range of ethnic groups, and more than

five individuals per NeuroGAP-Psychosis recruitment site

reported the following primary ethnicities: Amhara and

Oromo from Addis Ababa, Ethiopia; Xhosa from Cape

Town, South Africa; Mijikenda from Kilifi, Kenya; and

the Kalenjin from Eldoret, Kenya (Table S1). There was

no predominantly reported primary ethnicity among the

18 individuals from Kampala, Uganda; rather, 11 different

ethnic groups were reported among these individuals.
An in silico framework for evaluating data generation

strategies with high-coverage WGS data

We considered variant calls generated from all reads to be

our ‘‘truth’’ variant calls throughout our analyses. Across

all individuals and geographical sites, these high-coverage

whole genomes contain 26 million variants, and there

were more than 4 million non-reference variants per
2021



Table 1. Concordance among "truth" dataset of high-coverage genomes versus comparison datasets, which consist of either
downsampled genomes (i.e., simulated low-coverage genomes) or filtered genomes (i.e., simulated GWAS array data)

No call ./. 0/0 0/1 1/1

No call a b c d e

./. f g h i j

0/0 k l m n o

0/1 p q r s t

1/1 u v w x y
individual in all populations except in Ethiopia (Table 2).

Consistent with our results, prior studies of Ethiopian ge-

netics have shown reductions in genetic diversity

compared with other African populations because of

back-to-Africa migrations from the Middle East.16–18

We next downsampled or subset our data to simulate

low-coverage and GWAS array data generation, respec-

tively, by using two approaches (Figure 1C). First, we

downsampled analysis-ready CRAM files to the number

of reads corresponding to 0.53, 13, 23, 43, 63, 103,

and 203 coverage (subjects and methods). With these

downsampled data, we then generated new variant call

sets corresponding to these depths (Table S2) and per-

formed variant quality control by using standard analysis

pipelines (subjects and methods). Second, we subset vari-

ants from the high-coverage ‘‘truth’’ data corresponding

to all polymorphic sites that would have been probed by

using each of the following Illumina arrays: the GSA, Psy-

chChip, MEGA, H3Africa, and Omni2.5. For both of these

datasets, we then compared the imputed data to the high-

coverage variant calls to assess the number and quality of

sites obtained.

We first compared the downsampled whole-genome

sequencing data (‘‘raw’’) to the highest depth ‘‘truth’’ prior

to any genotype refinement (‘‘refined’’) or imputation

(‘‘imputed’’). Compared with high-coverage sequencing

data, we expect low-coverage sequencing to produce

variant calls that have higher error rates and miss some ge-

netic variants altogether because of the reduced chance of

observing both alleles with high-quality reads across re-

gions of the genome. We therefore calculated non-refer-

ence concordance (subjects and methods) between the

downsampled variant call sets and the full coverage data

(Figure 2, Table S3). Non-reference concordance was lower

for indels than SNPs and was lowest for variants with �5%

frequency, as has been seen previously.19 This shape re-

flects the need for higher genotyping quality metrics to

call singleton and low-frequency variants compared with

common variants; a similar shape of curve relates fre-

quency and the mean genotype quality (GQ) metric.

After generating variant calls for low-coverage

sequencing data by using GATK (‘‘raw’’), we next used

Beagle, open-source software described previously,20,21

for genotype refinement and imputation of low-coverage

data, an approach taken in previous studies that used

low-coverage sequencing (subjects and methods,
The Ame
Figure 1D).9,22,23 Genotype refinement is designed to cor-

rect low-quality genotype calls via a haplotype reference

panel of high-confidence genotypes and considers geno-

type likelihoods rather than hard calls (‘‘refined’’). After-

ward, imputation uses the refined genotype calls to fill in

variants from the reference panel for sites not originally

called (‘‘imputed,’’ Figure 1D). We performed genotype

refinement and imputation on low-coverage sequencing

up to 63 by using 1000 Genomes phase 3 data as a haplo-

type reference panel.24 We excluded the higher depths,

103 and 203, given their already high concordance

without refinement (Figure 2) and to save computational

costs. To compare variant calls obtained from our whole-

genome sequencing experiment with several commonly

used genotyping arrays, we filtered variants from the

high-coverage ‘‘truth’’ dataset to those on the array and

then imputed genotypes by using the same methodology

as in the downsampled sequencing data (Figure 1B).

Comparison of data quality from imputed GWAS array

versus low-coverage sequencing data

We first compared non-reference concordance in the low-

versus high-coverage sequencing data by using variant

calls through each step of the process, including the raw

data ("raw"), after genotype refinement ("refined"), and af-

ter imputation ("imputed," subjects and methods). The to-

tal numbers of SNPs through each processing step are

shown in Table 3 (imputed> raw> refined). Prior to impu-

tation, we identify approximately 13 million variants from

13 sequencing compared to the 26 million in the high-

coverage data (�50%). This is a considerably larger number

of polymorphic variants than are genotyped on any array

(Table 3). A relatively low fraction of sites on some arrays

are polymorphic in NeuroGAP-Psychosis (e.g., only

68.8% of sites on GSA are polymorphic). We compared

this across 1000 Genomes populations by calculating the

mean proportion of SNPs at various frequencies on several

GWAS arrays (Figure 3). Of sites on the GSA array that were

present in any individual in the 1000 Genomes Project,

3.8% versus 8.9% were monomorphic in the EUR versus

AFR super populations, respectively, which were substan-

tially better than in NeuroGAP-Psychosis. These findings

reflect the fact that the 1000 Genomes Project is often

used to select variants for SNP arrays and that AFR popula-

tions in the 1000 Genomes Project are poor proxies for

those in NeuroGAP-Psychosis.
rican Journal of Human Genetics 108, 656–668, April 1, 2021 659



A B

C

D

Figure 1. Populations and sites included in high-coverage whole-genome sequence data and downsampling schema to assess the
performance of lower-coverage sequencing versus GWAS arrays
(A) Map indicating where participants in the NeuroGAP-Psychosis study are enrolled in this dataset.
(B) The first two principal components (PCs) show variation within and among populations. They first distinguish the Ethiopians, and
then the South Africans, from other African populations. Colors are consistent in (A) and (B).
(C) High-coverage genomes were processed with the GATK best practices pipeline. To mimic lower-coverage sequencing data, we down-
sampled analysis-ready CRAM files to various depths, followed by a standard implementation of the variant calling pipeline. To mimic
GWAS array data, we filtered the variants called from the high-coverage sequencing data to only those sites on the arrays.
(D) After variants were filtered from high-coverage data to sites on GWAS arrays, they were phased and imputed with Beagle 5.1. After
downsampling reads from high-coverage data to various depths of coverage, we refined genotypes by using Beagle 4.1 (the last version of
Beagle to provide this feature), then phased and imputed them by using Beagle 5.1, as with GWAS arrays. ‘‘Raw’’ indicates that variant
calls were produced directly from GATK with no genotype refinement or imputation, ‘‘refined’’ indicates variant calls from genotype
refinement without imputation, and ‘‘imputed’’ indicates imputed variants following genotype refinement.
We also investigated the importance of the reference

panel and the impact of missing population representation

on sensitivity. For example, regardless of technology, we
660 The American Journal of Human Genetics 108, 656–668, April 1,
estimate that 33% of singletons in the ‘‘truth’’ dataset

can be imputed (Table 3, i.e., 67% of singletons in the Neu-

roGAP-Psychosis data are absent or not tagged by the 1000
2021



Table 2. Genetic samples included in these sequencing analyses

Institution Geographical site Number of individuals Number of variants (mean 5 SD) Depth of coverage (mean 5 SD)

Addis Ababa University Addis Ababa, Ethiopia 17 3,988,434 5 45,857 36.3 5 8.03

KEMRI-WT-Coast Kilifi, Kenya 19 4,284,557 5 32,558 37.4 5 6.21

Makerere University Kampala, Uganda 18 4,297,527 5 24,234 40.9 5 8.56

Moi University Eldoret, Kenya 19 4,246,784 5 46,903 37.2 5 7.27

University of Cape Town Cape Town, South Africa 18 4,410,899 5 14,966 37.6 5 6.19

19 samples from Ethiopia were sequenced, but two showed significant evidence of contamination, so they were excluded from variant calling metrics and all
downstream analyses. The number of variants reported are per individual non-reference variant calls.
Genomes phase 3 data). This estimate is most likely opti-

mistic given that the low sample size in this study means

that many variants reported here as singletons are most

likely somewhat common in the population. Additionally,

62% of common variants (allele count, AC > 5, minor

allele frequency [MAF] > 3%) in the ‘‘truth’’ dataset can

be imputed, indicating that 38% of variants in the eastern

and southern African populations in NeuroGAP-Psychosis

are absent or untagged in the 1000 Genomes phase 3 data.

While the number of variants imputed is inherently

bounded by the reference data, the raw data indicates rela-

tively high sensitivity to variants present in the ‘‘truth’’

data. For example, 45% of singletons in the full dataset

can be detected with 43 data (Table 3). At the same depth,

95% of common variants are detected. As expected, we

observe diminishing returns in numbers of variants

imputed with increasing sequencing depth. More variants

can be imputed with 23 sequencing via Beagle than with

any of the GWAS arrays. Our sensitivity for detecting vari-

ants common in the truth data (74%) is higher with 13

sequencing than with imputed data from any array

(62%, Table 3).

We next investigated variant call accuracy by calculating

non-reference concordance across technologies. We also

compared two imputation methodologies for use with

low-coverage sequencing data—Beagle versus Gencove—

as the latter was specifically designed for use with low-

coverage data. Unlike Beagle, Gencove takes unmapped

FASTQ files as an input to perform phasing and imputa-
The Ame
tion, allowing consideration of genotype probabilities

directly as described previously.25 Figure 4 shows non-

reference concordance by allele frequency across

sequencing versus array technologies and using different

software for genotype refinement and imputation. Data

processing steps through imputation (‘‘refined’’ and

‘‘imputed’’ panels with results from Beagle software) are

shown in Figure 4A, low-coverage sequencing imputation

accuracy comparison of Beagle versus Gencove software

is shown in Figure 4B, and results of low-coverage imputa-

tion with Gencove versus GWAS array data imputation

with Beagle are shown in Figure 4C. Figure 4A includes

different variants across panels, including fewer but more

accurate variants in the ‘‘refined’’ panel, whereas the

‘‘imputed’’ panel includes more than double the number

of variants but with reduced accuracy (Table 3). When us-

ing Beagle for imputing both arrays and low-coverage data,

these analyses indicate that the lower-density arrays (GSA

and PsychChip) perform similarly to 13 sequencing, me-

dium-density arrays (MEGA) perform almost as well as

23 data, and high-density arrays (Omni2.5 array and

H3Africa array specifically designed to capture African

variation) perform between 23 and 43 sequencing

(Figure 4A). We also compared the accuracy of two imputa-

tion methods, Beagle and Gencove, by using the same set

of imputed sites in the low-coverage sequencing data. We

find that imputation performs better with Gencove for

the lowest depths (0.53, 13, and 23), whereas Beagle

performs better for higher depths (43 and 63, Figure 4B,
Figure 2. Pre-imputation non-reference
variant concordance
We computed non-reference concordance
comparing downsampled data at several
depths of coverage to the highest depth
sequencing call set available for all samples.
The size of each dot is proportional to the
number of variants in each bin. Depth sum-
maries across samples are shown in
Figure S1. Non-reference concordances
averaged across variants of all allele fre-
quencies are shown in Table S3.

rican Journal of Human Genetics 108, 656–668, April 1, 2021 661



Table 3. Sensitivity of various sequencing depths and GWAS arrays to detect singletons and common variants through several analytical
steps

# of SNPs % singletons present in full set % common variants in full set

Call set Raw Refined Imputed Raw Refined Imputed Raw Refined Imputed

0.53 9,236,562 7,452,675 18,414,145 0.04 0.01 0.33 0.55 0.40 0.62

13 13,036,891 10,389,726 18,974,677 0.09 0.03 0.33 0.74 0.52 0.62

23 15,716,019 13,387,436 19,887,495 0.2 0.08 0.33 0.88 0.59 0.62

43 20,958,987 16,458,866 21,083,626 0.45 0.17 0.33 0.95 0.61 0.62

63 23,352,341 17,633,642 21,402,104 0.62 0.23 0.33 0.97 0.61 0.62

103 24,955,954 N/A N/A 0.8 N/A N/A 0.98 N/A N/A

203 25,136,680 N/A N/A 0.93 N/A N/A 0.99 N/A N/A

All reads 26,093,644 N/A N/A 1 N/A N/A 1 N/A N/A

GSA 422,156 N/A 18,272,172 N/A N/A 0.33 N/A N/A 0.62

PsychChip 350,678 N/A 18,190,171 N/A N/A 0.33 N/A N/A 0.62

MEGA 1,152,178 N/A 19,219,473 N/A N/A 0.33 N/A N/A 0.62

H3Africa 2,151,137 N/A 19,709,178 N/A N/A 0.33 N/A N/A 0.62

Omni2.5 2,072,034 N/A 19,698,788 N/A N/A 0.33 N/A N/A 0.62

All numbers reported here are from processing via Beagle. Common variants here are defined as having >5 copies (i.e., MAF > 3%). ‘‘Raw’’ indicates that variant
calls were produced directly from GATK with no genotype refinement or imputation, ‘‘refined’’ indicates variant calls from genotype refinement without impu-
tation, and ‘‘imputed’’ indicates imputed variants following genotype refinement.
Table S4). When comparing low-coverage data imputed

with Gencove versus GWAS array data imputed with

Beagle, we see that 13 sequencing outperforms the low-

and medium-density arrays (MEGA, GSA, and PsychChip)

and that the high-density arrays (H3Africa and Omni2.5)

perform comparably to 23 sequencing (Figure 4C, Table

S4). Overall, these results show that GWAS arrays perform

at best comparably to low-coverage sequencing.

In addition to imputation methods, we also compared

newer imputation panels where possible. Specifically,

African American and Hispanic/Latino genomes are

imputed more accurately with the TOPMed imputation

panel compared to the 1000 Genomes data.26 Because

TOPMed neither shares harmonized individual-level data

nor supports genotype refinement, we were only able to

compare imputation accuracy for the GWAS arrays and

not for low-coverage sequencing, which is shown in

Figure S4. As shown previously, imputation accuracy is

significantly higher in NeuroGAP with the TOPMed server

compared with the 1000 Genomes data.

Low-coverage sequencing quality across diverse African

populations

We next investigated the impact of ancestral diversity on

imputation accuracy from arrays versus sequencing depth.

The populations in NeuroGAP-Psychosis span a broad

range of geographical, ethnolinguistic, and ancestral diver-

sity in eastern and southern Africa. Despite this consider-

able diversity with a range of genetic distances from popu-

lations represented in the 1000 Genomes reference

haplotypes, there is remarkable qualitative consistency in

data quality from various sequencing depths and GWAS ar-
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rays (Figure 5). We quantify subtle differences across popu-

lations (Table S5). For example, imputation is least accurate

among participants from Addis Ababa, Ethiopia. In

contrast, imputation performs best in participants from Ki-

lifi, Kenya, where some participants self-identify as Luhya.

These differences in imputation accuracy across popula-

tionsmost likely reflect genetic distances between the Neu-

roGAP-Psychosis participants and the 1000 Genomes

phase 3 reference data, which includes, for example, a Lu-

hya population from Kenya (LWK). These findings consis-

tently indicate that 43 sequencing data outperform all

common commercial GWAS arrays for diverse African

ancestry populations, including those specifically designed

with African variation in mind, such as the H3Africa array.

Sampling and microbiome variation influence precise

sequencing depth

Although this in silico framework enables us to compare two

data generation strategies in a highly controlled manner

with far fewer resources than data generation from many

experiments, a limitation of this approach is that downsam-

pling to an exact depth of coverage does not capture realistic

variability. Important factors that can drive variation in hu-

man genome coverage here are variation arising from the

sample pooling process for sequencing and variation in

rates of oral microbiome contamination. Across the Broad

Genomics Platform, we find that samples derived from

saliva typically have bacterial contamination ranging from

5%–40% with a median around 10%, whereas blood-

derived samples typically align to the human genome at

98% or higher. In these genomes specifically, contamina-

tion tends to be low: alignment rates are 93.1% 5 6.1%
2021



Figure 3. Minor allele frequency (MAF) across GWAS arrays and continental ancestries via 1000 Genomes data
AFR, Africans; AMR, admixed Americans (e.g., Hispanics/Latinos); EAS, East Asians; EUR, Europeans; SAS, South Asians. These results
indicate that the GSA captures variants that are especially common in Europeans relative to elsewhere.
(mean 5 SD). These alignment rates are in line with

previous work.27

To better understand variability arising from these com-

bined effects, we targeted 13 sequencing in an additional

95 non-overlapping samples sequenced from three of the

sites: Addis Ababa, Ethiopia (n ¼ 32); Eldoret, Kenya (n ¼
32); and Kampala, Uganda (n ¼ 31). Similar to the high-

coverage whole genomes, alignment rates were high at

93.0% 5 5.1% (mean 5 SD). Coverage was close to the

target at 1.133 5 0.163 (mean 5 SD): 73/95 reached 13

and the remainder were typically quite close (min ¼
0.723, Figure S3). Unsurprisingly, these are correlated ef-

fects (Pearson’s r ¼ 0.52, p ¼ 5e�8).

A potential advantage of low-coverage sequencing over

GWAS arrays is the ability to use off-target reads that do not

map to Homo sapiens for further microbiome analysis. We

used taxonomic profiling quantifications from the software

Kraken,whichwereproducedfrom63data input toGencove.

For each individual, we quantified relative abundances from

read counts. We show the phylum-level relative abundances

as a proof-of-concept (Figure S5).

Comparable list prices for low-coverage sequencing and

GWAS arrays

Lastly, we list realistic pricing for low-coverage sequencing

versus GWAS arrays based on current publicly available re-

agent costs from Illumina (Table 4). Although these do not

include fixed sample and library preparation costs, we

assume that these are comparable across GWAS arrays

and sequencing approaches. We note that all costs can

vary considerably depending on consortium pricing,

sequencing facility, volume, etc. While sequencing costs
The Ame
list volume discounts (e.g., up to 39% discount for high

volume flow cell purchasing), GWAS arrays do not; to

compare these technologies as fairly as possible, we there-

fore list the non-discounted price but note that costs could

be lower (Table S6). On the basis of these prices, we show

that the high-density arrays are similar in price to 4–63

sequencing. The lowest depths of sequencing evaluated

here, 0.5–13, are cheaper than the PsychChip and GSA.

Another pricing consideration regarding different

depths of sequencing or GWAS arrays is the computational

complexity. Genotype refinement is only necessary for

low-coverage sequencing and is a more computationally

complex step than imputation. Imputation is also slightly

more costly with low-coverage sequencing than with

GWAS arrays because more variants are called from the

beginning, increasing genomic coverage. However, we

find that the computational costs of genotype refinement

and the slightly increased computational complexity of

imputation from more variants called at the outset are

negligible compared with data generation costs. For low-

coverage sequencing, reagent costs alone are R100 times

higher than the sum of refinement and imputation de-

pending on depth of coverage (ratio increasing with higher

depths), and GWAS array costs are >2,800 times higher

than imputation (ratio increasing with higher array den-

sity, Table S7).
Discussion

In this study, we have compared the relative merits and

costs of several genetic data generation and processing
rican Journal of Human Genetics 108, 656–668, April 1, 2021 663
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B C

Figure 4. Non-reference concordance for SNPs as a function of sequencing depth or genotyping array, frequency, analysis stage, and
imputation method
‘‘Truth’’ dataset here is the full depth joint called sequencing dataset. All depths of sequencing data are shown for the raw data (i.e., only
variant calling from GATK with no genotype refinement or imputation following). We excluded sequencing at 103 and 203 for all
except the raw data because of minimal potential accuracy gains and to reduce computational costs.
(A) Non-reference concordance comparisons throughout steps of the Beagle analysis pipeline. Size of the points are proportional to the
number of SNPs in each frequency bin. ‘‘Raw’’ indicates that variant calls were produced directly from GATK with no genotype refine-
ment or imputation, ‘‘refined’’ indicates variant calls from genotype refinement without imputation, and ‘‘imputed’’ indicates imputed
variants following genotype refinement.
(B) Non-reference concordance comparisons of Beagle versus Gencove software for imputation of low-coverage data.
(C) Non-reference concordance comparison of Gencove software for imputation of low-coverage data versus Beagle for imputation of
GWAS arrays. Non-reference concordance values averaged across (B) and (C) are shown in Table S4.
strategies in a diverse cohort of eastern and southern Afri-

cans. We conclude that 43 sequencing outperforms all

GWAS arrays evaluated, including dense arrays. This

outcome is in spite of the fact that the dense H3Africa

array was designed to capture African variation and thus

tags the most variation in the NeuroGAP-Psychosis data

of all GWAS arrays analyzed here. 43 sequencing is com-

parable in price to high-density arrays that assay millions

of SNPs and indels across the allele frequency spectrum.

Among more affordable options, we find that 13

sequencing costs less than and performs similarly to or

better than commonly used lower-density arrays such as

the Illumina GSA. Additionally, we note that the GSA is

composed of variants most common in European popula-

tions and is thus not the most appropriate technology for

studies of participants with primarily non-European

ancestry.
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Low-coverage sequencing has several distinct advan-

tages compared to GWAS arrays, especially the more accu-

rate identification of genetic variation across the allele fre-

quency spectrum particularly in underrepresented

populations. In these NeuroGAP-Psychosis data, we find

that 38% of common variants could not be imputed

from the 1000 Genomes phase 3 data, most likely because

of a dearth of eastern and southern African diversity repre-

sented in this reference panel. Among rare variants, we

find that 43 sequencing detects nearly half of all single-

tons, an especially appealing attribute for disease studies.

Previous work in psychiatric genetics has shown that while

common variants explain most of the SNP heritability for

schizophrenia,28,29 there are at least partially converging

genetic signatures emerging from exome sequencing

studies that provide new biological insights and are espe-

cially informative for severe psychiatric disorders.30
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Figure 5. Non-reference concordance between imputed versus truth data across various populations and sites in Africa
Size of the points where applicable are proportional to the number of SNPs in each frequency bin. Quantitative comparisons across all
variants and imputation methods are shown in Table S5.
Because we are still in the early stages of gene discovery for

these and many other disease areas, sequencing technolo-

gies that bridge the rare and common variant gap will be

critical in fully elucidating their genetic architectures by

refining causal variants, detecting variation enriched in

cases and genetically clustered in particular functional do-

mains, and identifying rare variants with large effects.31,32

Post-GWAS methodological advances with low-coverage

sequencing data can facilitate these analyses; for example,

pooling reads near GWAS peaks in cases separately from

controls can enhance variant discovery, an important

step for fine-mapping. Fully new analysis opportunities,
Table 4. Costs of reagents for sequencing and genotyping options

Depth/array

303

203

63

Omni2.5

43

MEGA Global

23

PsychChip

GSA

13

0.53

We aggregated the prices for reagents from Illumina’s website as of April 10, 2020.
we assume to be comparable between GWAS arrays and sequencing approaches.
included here. Sequencing reagent costs use Illumina’s list price for the NovaSeq
listed assume single flow cell purchasing, which is listed at $31,700. Prices adjustin
costs assume 125 Gb to achieve a target depth of 303 whole-genome sequencin

The Ame
such as using off-target reads to measure microbiome vari-

ation as demonstrated here, are also possible.

An especially valuable aspect of low-coverage sequencing

in underrepresented populations is the durable opportu-

nity to construct new haplotype reference panels used for

imputation, which are mostly lacking with few excep-

tions.26 Recent development of genomics infrastructure,

such as the TOPMed imputation server, in theory further

supports data quality improvements by including more

deeply sequenced and diverse haplotypes.33,34 In practice,

however, because TOPMed does not currently share the

harmonized individual-level data required for genotype
Reagent cost per sample

$1,320.83

$880.55

$264.17

$184.43

$176.11

$119.00

$88.06

$71.38

$49.00

$44.03

$22.01

These prices notably do not include sample and library preparation costs, which
The H3Africa array is not commercially listed on Illumina’s site and is thus not

6000 S4 Reagent Kit. Each flow cell has a maximum output of 3,000 Gb. Prices
g for bulk flow cell purchasing from Illumina are shown in Table S6. Sequencing
g coverage.
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refinement of low-coverage sequencing data, its practical

utility is more limited and it is not feasible to use here.

Instead, evaluation of imputation accuracy in this and

other similar projects relies on existing resources that pro-

vide transparent access to requisite data, such as the 1000

Genomes Project and/or the Haplotype Reference Con-

sortium (HRC), the latter of which aggregated low-coverage

sequencing data from European ancestry populations into

an imputation panel.4,35Weplan to build on theHRC’s pre-

vious work by integrating the high-coverage genomes

sequenced here along with additional low-coverage whole

genomes in African populations to develop a more diverse

reference panel that will improve phasing and imputation

for diverse African populations. New computationally effi-

cient methods will be required to make streamlined use of

low-coverage sequencing data and growing reference

panels.36

GWAS arrays are currently the most commonly used

data generation technology in large-scale genetic studies.

Accuracy gains in European ancestry populations from

low-coverage sequencing compared with GWAS arrays

are more modest than in other populations because of

Eurocentric SNP ascertainment on GWAS arrays.35 Yet,

low-coverage sequencing still outperforms arrays in Euro-

peans while providing several distinct advantages in popu-

lations underrepresented in genomics. These advantages

are especially pronounced in African populations where

overall genetic variation is higher, linkage disequilibrium

is shorter, and haplotype reference data are lacking.

Although African populations have the most genetic vari-

ation globally, with as much variation among individuals

from different regions of Africa as between some conti-

nents, African ancestry genomes are vastly underrepre-

sented. Further, the vast majority of African ancestry

participants in genetic studies are African Americans or

Afro-Caribbeans (72%–93% in the GWAS catalog and

R90% in gnomAD) with primarily West African ances-

tors.37 However, large-scale efforts such as the Human, He-

redity, and Health in Africa (H3Africa) Initiative and the

NeuroGAP study aim to address these gaps.13,38 In addition

to informing the most appropriate and cost-effective data

generation strategies, this study also adds to a relatively

small number of high-coverage whole genomes sequenced

from Africa.
Data and code availability

Data will be hosted on the Terra environment created by Broad,

which contains a rich system of workspace functionalities

centered on data sharing and analysis. The platform has been

given a redesigned user interface under the Terra branding and

extended to support a number of projects, including AnVIL (Anal-

ysis, Visualization, and Informatics Labspace). Each AnVIL data ac-

cess request (DAR) is routed to the Data Access Committee (DAC)

for the dataset. DAC’s are responsible for reviewing the DAR for

the dataset to determine whether the research use proposed in

the DAR is within the bounds of the data use limitations of the re-

quested dataset. We are following H3Africa policies for data
666 The American Journal of Human Genetics 108, 656–668, April 1,
sharing, which are designed to enable African collaborators to

make use of the data they collected before better resourced groups

have access. These data will be embargoed for one year following

publication. All code used is available in a GitHub repository as

described in web resources.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.03.012.
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Web resources

1000 Genomes ftp site, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000_genomes_project/release/

20181203_biallelic_SNV/

Cromwell, https://cromwell.readthedocs.io/en/stable/

GATK workflows, https://github.com/gatk-workflows/gatk4-

germline-snps-indels

NeuroGAP downsampling scripts, https://github.com/armartin/

neurogap_downsampling
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